Kinetics of Mixed Ni-Al Precipitate Formation on a Soil Clay Fraction

ثبت نشده
چکیده

The kinetics of mixed Ni-Al layered double hydroxide (LDH) precipitate formation on a soil clay fraction was monitored using X-ray absorption fine structure (XAFS) spectroscopy. The kinetic behavior was monitored at pH 6.0, 6.8, and 7.5 in order to determine the effect of reaction pH on precipitate formation. XAFS analyses were performed on a Ni-reacted whole soil at pH 7.5 to determine the effect of metal oxides and organic matter on mixed NiAl LDH formation. The initial Ni concentration was 3 mM with a solid/solution ratio of 10 g L-1 in 0.1 M NaNO3. Initial Ni sorption kinetics on the soil clay were rapid at all pH values but differed at each pH for longer reaction times. The sorption kinetics at pH 7.5 were characterized by an extremely rapid initial step with nearly 75% of Ni sorbed within 20 h, followed by a slower step with nearly 100% of the Ni removed from solution within 150 h. XAFS analysis of the pH 7.5 sorption samples indicated the formation of a mixed Ni-Al LDH within 15 min. The sorption kinetics at pH 6.8 were initially rapid, followed by a slow step, and XAFS revealed the formation of a NiAl LDH within 2 h. At pH 6.0, Ni sorption did not exceed 20%, and XAFS analysis revealed no LDH formation within 72 h. XAFS analysis for the whole soil indicated a mixed NiAl phase formed at pH 7.5 after 24 h of reaction. These findings indicate that mixed metal precipitate formation occurs in heterogeneous clay systems and whole soils; therefore, they should be considered when predicting and modeling the fate of metals in subsurface environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation and Stability of Ni-Al Hydroxide Phases in Soils

The formation of mixed metal-aluminum hydroxide surface precipitates is a potentially significant uptake route for trace metals (including Co, Ni, and Zn) in environmental systems. This paper investigates the effect of mixed Ni-Al hydroxide precipitate formation and aging on Ni solubility and bioavailability in laboratory contaminated soils. Two Delaware agricultural soils were reacted with a 3...

متن کامل

Formation and stability of Ni-Al hydroxide phases in soils.

The formation of mixed metal-aluminum hydroxide surface precipitates is a potentially significant uptake route for trace metals (including Co, Ni, and Zn) in environmental systems. This paper investigates the effect of mixed Ni-Al hydroxide precipitate formation and aging on Ni solubility and bioavailability in laboratory contaminated soils. Two Delaware agricultural soils were reacted with a 3...

متن کامل

The Link between Clay Mineral Weathering and the Stabilization of Ni Surface Precipitates

The formation of transition-metal surface precipitates may occur during sorption to clay minerals under ambient soil conditions. This process may lead to significant longterm stabilization of the metal within the soil profile. However, the rates and mechanisms controlling surface precipitate formation are poorly understood. We monitored changes in the reversibility of Ni sorbed to a clay minera...

متن کامل

Spectroscopic Evidence for the Formation of Mixed-Cation Hydroxide Phases upon Metal Sorption on Clays and Aluminum Oxides

Retention of heavy metal ions on soil mineral surfaces is an important process for maintaining environmental quality. A thorough understanding of the kinetics and mechanisms of heavy metal sorption on soil mineral surfaces is therefore of fundamental importance. The present study examines the kinetics and mechanisms of Ni(II) sorption onto pyrophyllite, kaolinite, gibbsite, and montmorillonite....

متن کامل

Kinetics of the Formation and Dissolution of Ni Precipitates in a Gibbsite/Amorphous Silica Mixture.

There have been a number of studies that have examined metal precipitation reactions on an array of natural soil materials. While many of these investigations have focused on model single-component systems, recent research has appeared on metal precipitation on soils and clay fractions of soils. However, few studies have explored mixed model component systems, which may lead to a better underst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999